Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Adv Sci (Weinh) ; : e2401710, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582513

RESUMEN

Corneal neovascularization (CNV) is a common clinical finding seen in a range of eye diseases. Current therapeutic approaches to treat corneal angiogenesis, in which vascular endothelial growth factor (VEGF) A plays a central role, can cause a variety of adverse side effects. The technology of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 can edit VEGFA gene to suppress its expression. CRISPR offers a novel opportunity to treat CNV. This study shows that depletion of VEGFA with a novel CRISPR/Cas9 system inhibits proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Importantly, subconjunctival injection of this dual AAV-SpCas9/sgRNA-VEGFA system is demonstrated which blocks suture-induced expression of VEGFA, CD31, and α-smooth muscle actin as well as corneal neovascularization in mice. This study has established a strong foundation for the treatment of corneal neovascularization via a gene editing approach for the first time.

2.
Br J Ophthalmol ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142332

RESUMEN

AIMS: To assess the repeatability and reproducibility of the ocular measurements obtained with the Suoer SW-9000 µm Plus, a new fully automatic biometer based on optical low coherence reflectometry (OLCR) biometer, and to compare them to those obtained by a swept-source optical coherence tomography (SS-OCT)-based biometer. METHODS: This prospective study consisted of 115 eyes of 115 healthy subjects. The measurements were taken by the two optical biometers in random order. The measured parameters were axial length (AL), central corneal thickness (CCT), aqueous depth (AQD), anterior chamber depth (ACD), mean keratometry (Km), lens thickness (LT) and corneal diameter (CD). To evaluate the intraobserver repeatability and interobserver reproducibility, the within-subject SD, test-retest variability, coefficient of variation (CoV) and intraclass correlation coefficient (ICC) were adopted. The Bland-Altman plot was drawn to assess the agreement. RESULTS: The repeatability and reproducibility of all parameters for the new device were excellent (ICC>0.960 and CoV<0.71%). The Bland-Altman plots showed high agreement between the OLCR-based and SS-OCT-based devices for AL, CCT, AQD, ACD, Km and LT, with narrow 95% limit of agreements (LoAs) (-0.08 mm to 0.06 mm, -15.91 µm to -1.01 µm, -0.09 mm to 0.09 mm, -0.09 mm to 0.08 mm, -0.47 D to 0.35 D, -0.05 mm to 0.16 mm, respectively) and moderate agreement for CD (95% LoA: -0.67 mm to -0.01 mm). CONCLUSIONS: The new Suoer SW-9000 µm Plus biometer showed excellent repeatability and reproducibility. All the parameters obtained by this biometer were similar to those measured by SS-OCT-based biometer.

3.
Glia ; 71(6): 1502-1521, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36794533

RESUMEN

Connexin43 (Cx43) is a major gap junction protein in glial cells. Mutations have been found in the gap-junction alpha 1 gene encoding Cx43 in glaucomatous human retinas, suggestive of the involvement of Cx43 in the pathogenesis of glaucoma. However, how Cx43 is involved in glaucoma is still unknown. We showed that increased intraocular pressure in a glaucoma mouse model of chronic ocular hypertension (COH) downregulated Cx43, which was mainly expressed in retinal astrocytes. Astrocytes in the optic nerve head where they gather and wrap the axons (optic nerve) of retinal ganglion cells (RGCs) were activated earlier than neurons in COH retinas and the alterations in astrocytes plasticity in the optic nerve caused a reduction in Cx43 expression. A time course showed that reductions of Cx43 expression were correlated with the activation of Rac1, a member of the Rho family. Co-immunoprecipitation assays showed that active Rac1, or the downstream signaling effector PAK1, negatively regulated Cx43 expression, Cx43 hemichannel opening and astrocyte activation. Pharmacological inhibition of Rac1 stimulated Cx43 hemichannel opening and ATP release, and astrocytes were identified to be one of the main sources of ATP. Furthermore, conditional knockout of Rac1 in astrocytes enhanced Cx43 expression and ATP release, and promoted RGC survival by upregulating the adenosine A3 receptor in RGCs. Our study provides new insight into the relationship between Cx43 and glaucoma, and suggests that regulating the interaction between astrocytes and RGCs via the Rac1/PAK1/Cx43/ATP pathway may be used as part of a therapeutic strategy for managing glaucoma.


Asunto(s)
Glaucoma , Hipertensión Ocular , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Astrocitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Glaucoma/metabolismo , Glaucoma/patología , Hipertensión Ocular/metabolismo , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Células Ganglionares de la Retina/metabolismo
4.
Prog Retin Eye Res ; 93: 101169, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736070

RESUMEN

Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.


Asunto(s)
Glaucoma , Gliosis , Animales , Gliosis/patología , Retina/metabolismo , Células Ganglionares de la Retina/patología , Neuroglía/patología , Presión Intraocular , Modelos Animales de Enfermedad
5.
Neural Regen Res ; 18(7): 1570-1577, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36571364

RESUMEN

Retinal ganglion cell apoptotic death is the main pathological characteristic of glaucoma, which is the leading cause of irreversible blindness. Disruption of Ca2+ homeostasis plays an important role in glaucoma. Voltage-gated Ca2+ channel blockers have been shown to improve vision in patients with glaucoma. However, whether and how voltage-gated Ca2+ channels are involved in retinal ganglion cell apoptotic death are largely unknown. In this study, we found that total Ca2+ current densities in retinal ganglion cells were reduced in a rat model of chronic ocular hypertension experimental glaucoma, as determined by whole-cell patch-clamp electrophysiological recordings. Further analysis showed that L-type Ca2+ currents were downregulated while T-type Ca2+ currents were upregulated at the later stage of glaucoma. Western blot assay and immunofluorescence experiments confirmed that expression of the CaV1.2 subunit of L-type Ca2+ channels was reduced and expression of the CaV3.3 subunit of T-type Ca2+ channels was increased in retinas of the chronic ocular hypertension model. Soluble tumor necrosis factor-α, an important inflammatory factor, inhibited the L-type Ca2+ current of isolated retinal ganglion cells from control rats and enhanced the T-type Ca2+ current. These changes were blocked by the tumor necrosis factor-α inhibitor XPro1595, indicating that both types of Ca2+ currents may be mediated by soluble tumor necrosis factor-α. The intracellular mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and nuclear factor kappa-B signaling pathway mediate the effects of tumor necrosis factor-α. TUNEL assays revealed that mibefradil, a T-type calcium channel blocker, reduced the number of apoptotic retinal ganglion cells in the rat model of chronic ocular hypertension. These results suggest that T-type Ca2+ channels are involved in disrupted Ca2+ homeostasis and apoptosis of retinal ganglion cells in glaucoma, and application of T-type Ca2+ channel blockers, especially a specific CaV3.3 blocker, may be a potential strategy for the treatment of glaucoma.

6.
Pain Physician ; 25(6): E815-E822, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36122264

RESUMEN

BACKGROUND: Pudendal neuralgia (PN) is one of the most common forms of genital pain. About 4% or higher of patients suffering from chronic pain. OBJECTIVES: The aim of this study was to evaluate the risk factors for prediction of refractory PN (RPN). STUDY DESIGN: A retrospective multivariate analysis study. SETTING: This retrospective analysis included 112 patients with PN who received the pudendal nerve block treatment at the Pain Department of General Hospital of People's Liberation Army. METHODS: Univariate and multivariable logistic regression analyses were used for covariates selection. A nomogram was developed to estimate nonresponse to the pudendal nerve block. RESULTS: The median age of patients and duration of patients were 48.0 and 1.25 years, respectively. Among 112 patients, there were 64 good responders to the pudendal nerve block for neuropathic pain and 48 nonresponders. Multivariate analysis of 112 patients with PN demonstrated high self-rating depression scale scores (> 32) (odds ratio [OR], 95% confidence interval [CI]: 0.11, 0.01-0.77), damage to more than 2 terminal branches (OR, 95% CI: 0.22, 0.07-0.71), sensory deficit at S2-S4 on the dermatome map (OR, 95% CI: 0.22, 0.05-0.90), and duration of pain (> 4 years) (OR, 95% CI: 0.10, 0.03-0.42) were significant prognostic factors for nonresponse to the pudendal nerve block. LIMITATIONS: There are information biases for retrospective analysis, thus making it more difficult to come up with definitive conclusions. Large-scale randomized clinical trials are warranted to evaluate the risk factors for prediction of RPN. CONCLUSIONS: A longer duration of pain was correlated with a worse prognosis of the neurological disease. Patients with depression were prone to nonresponse to the pudendal nerve block treatment. Pain involved in more than 2 terminal branches and small fibers, affected at S2-S4 dermatome map, were considered to poor prognosis.


Asunto(s)
Neuralgia del Pudendo , Humanos , Análisis Multivariante , Nomogramas , Neuralgia del Pudendo/tratamiento farmacológico , Estudios Retrospectivos , Factores de Riesgo
7.
World J Clin Cases ; 10(16): 5487-5494, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35812691

RESUMEN

BACKGROUND: Specific pulmonary infection could seriously threaten the health of pilots and their companions. The consequences are serious. We investigated the clinical diagnosis, treatment, and medical identification of specific pulmonary infections in naval pilots. CASE SUMMARY: We analyzed the medical waiver and clinical data of four pilots with specific pulmonary infections, who had accepted treatment at the Naval Medical Center of Chinese People's Liberation Army between January 2020 and November 2021, including three cases of tuberculosis and one of cryptococcal pneumonia. All cases underwent a series of comprehensive treatment courses. Three cases successfully obtained medical waiver for flight after being cured, while one was grounded after reaching the maximum flight life after being cured. CONCLUSION: Chest computed tomography scanning should be used instead of chest radiography in pilots' physical examination. Most pilots with specific pulmonary infection can be cured and return to flight.

8.
Neurosci Bull ; 38(8): 901-915, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35254644

RESUMEN

Microglia are involved in the inflammatory response and retinal ganglion cell damage in glaucoma. Here, we investigated how microglia proliferate and migrate in a mouse model of chronic ocular hypertension (COH). In COH retinas, the microglial proliferation that occurred was inhibited by the P2X7 receptor (P2X7R) blocker BBG or P2X7R knockout, but not by the P2X4R blocker 5-BDBD. Treatment of primary cultured microglia with BzATP, a P2X7R agonist, mimicked the effects of cell proliferation and migration in COH retinas through the intracellular MEK/ERK signaling pathway. Transwell migration assays showed that the P2X4R agonist CTP induced microglial migration, which was completely blocked by 5-BDBD. In vivo and in vitro experiments demonstrated that ATP, released from activated Müller cells through connexin43 hemichannels, acted on P2X7R to induce microglial proliferation, and acted on P2X4R/P2X7R (mainly P2X4R) to induce microglial migration. Our results suggest that inhibiting the interaction of Müller cells and microglia may attenuate microglial proliferation and migration in glaucoma.


Asunto(s)
Glaucoma , Microglía , Receptores Purinérgicos P2X4 , Receptores Purinérgicos P2X7 , Adenosina Trifosfato/farmacología , Animales , Proliferación Celular , Glaucoma/metabolismo , Ratones , Microglía/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Células Ganglionares de la Retina/metabolismo
9.
J Neuroinflammation ; 18(1): 303, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952606

RESUMEN

BACKGROUND: Glaucoma, the leading cause of irreversible blindness, is a retinal neurodegenerative disease, which results from progressive apoptotic death of retinal ganglion cells (RGCs). Although the mechanisms underlying RGC apoptosis in glaucoma are extremely complicated, an abnormal cross-talk between retinal glial cells and RGCs is generally thought to be involved. However, how interaction of Müller cells and microglia, two types of glial cells, contributes to RGC injury is largely unknown. METHODS: A mouse chronic ocular hypertension (COH) experimental glaucoma model was produced. Western blotting, immunofluorescence, quantitative real-time polymerase chain reaction (q-PCR), transwell co-culture of glial cells, flow cytometry assay, ELISA, Ca2+ image, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) techniques were employed to investigate the interaction of Müller cells and microglia, and its underlying mechanisms in COH retina. RESULTS: We first showed that Müller cell activation in mice with COH induced microglia activation through the ATP/P2X7 receptor pathway. The activation of microglia resulted in a significant increase in mRNA and protein levels of pro-inflammatory factors, such as tumor necrosis factor-α and interleukin-6. These inflammatory factors in turn caused the up-regulation of mRNA expression of pro-inflammatory factors in Müller cells through a positive feedback manner. CONCLUSIONS: These findings provide robust evidence, for the first time, that retinal inflammatory response may be aggravated by an interplay between activated two types of glial cells. These results also suggest that to reduce the interplay between Müller cells and microglia could be a potential effective strategy for preventing the loss of RGCs in glaucoma.


Asunto(s)
Células Ependimogliales/patología , Glaucoma/complicaciones , Microglía/patología , Retinitis/etiología , Retinitis/patología , Adenosina Trifosfato/fisiología , Animales , Técnicas de Cocultivo , Citocinas/metabolismo , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Hipertensión Ocular/complicaciones , Receptores Purinérgicos P2X7 , Células Ganglionares de la Retina/patología , Transducción de Señal
10.
Ann Transl Med ; 9(18): 1434, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34733986

RESUMEN

BACKGROUND: To analyze the imaging features of coronary artery-to-pulmonary artery fistula (CPAF) on coronary computed tomography angiography (CCTA). METHODS: This was a retrospective study of 3,975 patients who underwent 320 row detector CCTA examinations in our hospital from May 2015 to July 2020. A total of 22 patients who diagnosed with CPAF were reviewed for CCTA imaging characteristics, including the origin, number, blood volume, opening size, and course of fistula vessels, and the drainage site, size, and imaging features of the fistula. All cases were analyzed for the presence of coronary atherosclerotic plaque and that of deficient left ventricular myocardial perfusion. RESULTS: A total of 22 CPAF cases detected by CCTA were collected (men, 11; women, 11; median age, 59.6±10.1 years). There were 7, 10, and 5 cases detected with 1, 2, and 3 fistula vessels, respectively, among which 4 originated from the left coronary artery, 4 from the right coronary artery, and 14 had bilateral origins. There were 10 cases in which the fistula vessels presented as a worm-like tortuous dilation with (n=5) or without (n=5) aneurysm, while 12 cases showed malformed vascular networks with (n=8) or without (n=4) aneurysm, respectively. The calculated incidence of aneurysm formation was 59.09%, and fistula vessels with an aneurysm had larger blood volume than those without. All fistula showed a single drainage site, with an average diameter of 2.81±1.48 mm where the diameter of fistula with aneurysm was larger than that without. The fistula vessels drained into the left anterolateral and anterior walls of main pulmonary artery and the proximal left inferior PA, respectively. Typical jet sign, smoke sign, and isodensity sign were presented in 22, 14 and 1 case, respectively. For the coexistent abnormalities analyzed in 22 cases, 17 participants with CPAF demonstrated hypoperfusion of the fistula vessels, and 11 demonstrated calcified plaque accompanied with luminal stenosis to different degrees. CONCLUSIONS: The 320-row detector CCTA can comprehensively characterize the morphological features of CPAF, which is an optimal choice for physicians to make an accurate assessment before formulating patient management strategies.

11.
Anesth Pain Med ; 11(3): e115873, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34540643

RESUMEN

BACKGROUND: The cisterna Intrathecal Drug Delivery system (IDDS) with morphine has proven to be effective in treating refractory cancer pain above the middle thoracic vertebrae level in some countries. However, it has not been fully investigated in others. We designed the current project to investigate the efficacy and safety of cisterna IDDS for pain relief in refractory pain above the middle thoracic vertebrae level in advanced cancer patients. METHODS: This study protocol allows for eligible cancer patients to receive the cisterna IDDS operation. Pain intensity (Visual Analogue scale, VAS), quality of life (36-Item Short-Form Health Survey, SF-36), and depression (Self-Rating Depression scale, SDS) are assessed along with side effects in the postoperative follow-up visits. Recent literature suggests a potential role for cisterna IDDS morphine delivery for refractory pain states above the middle thoracic level. CONCLUSION: The results of this study may provide further evidence that cisterna IDDS of morphine can serve as an effective and safe pain relief strategy for refractory pain above the middle thoracic vertebrae level in advanced cancer patients.

12.
Trends Neurosci ; 44(9): 741-752, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34417060

RESUMEN

Calpains are evolutionarily conserved and widely expressed Ca2+-activated cysteine proteases that act at neutral pH. The activity of calpains is tightly regulated, given that their abnormal activation can have deleterious effects leading to promiscuous cleavage of various targets. Genetic mutations in the genes encoding calpains are associated with human diseases, while abnormally elevated Ca2+ levels promote Ca2+-dependent calpain activation in pathologies associated with ischemic insults and neurodegeneration. In this review, we discuss recent findings on the regulation of calpain activity and activation as revealed through pharmacological, genetic, and optogenetic approaches. Furthermore, we highlight studies elucidating the role of calpains in dendrite pruning and axon degeneration in the context of Ca2+ homeostasis. Finally, we discuss future directions for the study of calpains and potential therapeutic strategies for inhibiting calpain activity in neurodegenerative diseases.


Asunto(s)
Calcio , Calpaína , Calpaína/genética , Homeostasis , Humanos , Plasticidad Neuronal , Péptido Hidrolasas
13.
Cell Res ; 31(4): 433-449, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32848200

RESUMEN

Calcium-dependent proteolytic calpains are implicated in a variety of physiological processes, as well as pathologies associated with calcium overload. However, the mechanism by which calpain is activated remains elusive since intracellular calcium levels under physiological conditions do not reach the high concentration range required to trigger calpain activation. From a candidate screening using the abundance of the calpain target glutamate receptor GluRIIA at the Drosophila neuromuscular junction as a readout, we uncovered that calpain activity was inhibited upon knockdown of Ttm50, a subunit of the Tim23 complex known to be involved in the import of proteins across the mitochondrial inner membrane. Unexpectedly, Ttm50 and calpain are co-localized at calcium stores Golgi and endoplasmic reticulum (ER), and Ttm50 interacts with calpain via its C-terminal domain. This interaction is required for calpain localization at Golgi/ER, and increases calcium sensitivity of calpain by roughly an order of magnitude. Our findings reveal the regulation of calpain activation by Ttm50, and shed new light on calpain-associated pathologies.


Asunto(s)
Calcio/metabolismo , Calpaína/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Calpaína/química , Regulación hacia Abajo , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo
14.
Cell Death Dis ; 11(9): 734, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32913260

RESUMEN

Autophagy has a fundamental role in maintaining cell homeostasis. Although autophagy has been implicated in glaucomatous pathology, how it regulates retinal ganglion cell (RGC) injury is largely unknown. In the present work, we found that biphasic autophagy in RGCs occurred in a mouse model of chronic ocular hypertension (COH), accompanied by activation of Rac1, a member of the Rho family. Rac1 conditional knockout (Rac1 cKO) in RGCs attenuated RGC apoptosis, in addition to blocking the increase in the number of autophagosomes and the expression of autophagy-related proteins (Beclin1, LC3-II/I, and p62) in COH retinas. Electron micrograph and double immunostaining of LAMP1 and LC3B showed that Rac1 cKO accelerated autolysosome fusion in RGC axons of COH mice. Inhibiting the first autophagic peak with 3-methyladenine or Atg13 siRNA reduced RGC apoptosis, whereas inhibiting the second autophagic peak with 3-MA or blocking autophagic flux by chloroquine increased RGC apoptosis. Furthermore, Rac1 cKO reduced the number of autophagosomes and apoptotic RGCs induced by rapamycin injected intravitreally, which suggests that Rac1 negatively regulates mTOR activity. Moreover, Rac1 deletion decreased Bak expression and did not interfere with the interaction of Beclin1 and Bcl-2 or Bak in COH retinas. In conclusion, autophagy promotes RGC apoptosis in the early stages of glaucoma and results in autophagic cell death in later stages. Rac1 deletion alleviates RGC damage by regulating the cross talk between autophagy and apoptosis through mTOR/Beclin1-Bak. Interfering with the Rac1/mTOR signaling pathway may provide a new strategy for treating glaucoma.


Asunto(s)
Hipertensión Ocular/genética , Fragmentos de Péptidos/metabolismo , Células Ganglionares de la Retina/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Apoptosis , Diferenciación Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Hipertensión Ocular/patología
15.
Stem Cell Res Ther ; 11(1): 170, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375892

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) have been proposed to be responsible for tumor recurrence and chemo-resistance. Previous studies suggested that miR-153 played essential roles in lung cancer. However, the molecular mechanism of miR-153 in regulating the stemness of non-small cell lung cancer (NSCLC) remains poorly understood. In this study, we investigated the role of miR-153 in regulation of the stemness of NSCLC. METHODS: The stemness property of lung stem cancer cells was detected by sphere formation assay, immunofluorescence, and Western blot. Luciferase reporter assay was performed to investigate the direct binding of miR-153 to the 3'-UTR of JAG1 mRNA. Animal study was conducted to evaluate the effect of miR-153 on tumor growth in vivo. The clinical relevance of miR-153 in NSCLC was evaluated by Rt-PCR and Kaplan-Meier analysis. RESULTS: MiR-153 expression was decreased in lung cancer tissues. Reduced miR-153 expression was associated with lung metastasis and poor overall survival of lung cancer patients. Jagged1, one of the ligands of Notch1, is targeted by miR-153 and inversely correlates with miR-153 in human lung samples. More importantly, we found that miR-153 inhibited stem cell-like phenotype and tumor growth of lung adenocarcinoma through inactivating the Jagged1/Notch1 axis. CONCLUSION: MiR-153 suppresses the stem cell-like phenotypes and tumor growth of lung adenocarcinoma by targeting Jagged1 and provides a potential therapeutic target in lung cancer therapy.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Adenocarcinoma del Pulmón/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Proteína Jagged-1 , Neoplasias Pulmonares/genética , MicroARNs/genética , Células Madre Neoplásicas , Fenotipo
16.
Psychopharmacol Bull ; 50(4 Suppl 1): 48-66, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33633417

RESUMEN

Background: For patients suffering from primary or metastatic cancer above the middle thoracic vertebrae, refractory pain management still remains a great challenge. Theoretically, inserting a catheter tip into the cisterna magna may be a promising solution. However, at present, there have been no reliable data regarding this novel technique. We therefore investigated the efficacy and safety of an advanced approach for pain relief in a specific population. Methods: Thirty participants from two hospitals received the intrathecal deliveries of opioid to either one of two sites: cisterna magna (n = 15) or lower thoracic region (n = 15). Pain relief (visual analogue scale, VAS), quality of life (short form (36) health survey, SF-36) as well as depression (self-rating depression scale, SDS) were assessed in the follow-up visits and compared between the two groups. Results: Patients receiving intrathecal morphine delivery to cisterna magna achieved greater pain improvement indicated as significant decrease of VAS scores at day 1 and 7, and achieved better improvement in physical function (day 7 and 30), role physical (day 7 and 30), body pain (day 7, 30 and 90), general health (day 7, 30 and 90), vitality (day 7, 30 and 90), social function (day 90), role emotional (day 7 and 90), mental health (day 7, 30 and 90) and SDS (day 1 and 7). Conclusions: Intrathecal morphine delivery to cisterna magna might be an effective and safe technique for patients suffering from cancer at the middle thoracic vertebrae or above to control refractory pain. Trial registration: No. ChiCTR-ONN-17010681.


Asunto(s)
Dolor en Cáncer , Neoplasias , Dolor Intratable , Dolor en Cáncer/tratamiento farmacológico , Cisterna Magna , Humanos , Inyecciones Espinales , Morfina/uso terapéutico , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Dolor Intratable/tratamiento farmacológico , Dolor Intratable/etiología , Estudios Prospectivos , Calidad de Vida
17.
Dev Cell ; 48(6): 873-882.e4, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30827899

RESUMEN

The kinetochore is a complex of proteins, broadly conserved from yeast to man, that resides at the centromere and is essential for chromosome segregation in dividing cells. There are no known functions of the core complex outside of the centromere. We now show that the proteins of the kinetochore have an essential post-mitotic function in neurodevelopment. At the embryonic neuromuscular junction of Drosophila melanogaster, mutation or knockdown of many kinetochore components cause neurites to overgrow and prevent formation of normal synaptic boutons. Kinetochore proteins were detected in synapses and axons in Drosophila. In post-mitotic cultured hippocampal neurons, knockdown of mis12 increased the filopodia-like protrusions in this region. We conclude that the proteins of the kinetochore are repurposed to sculpt developing synapses and dendrites and thereby contribute to the correct development of neuronal circuits in both invertebrates and mammals.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Cinetocoros/metabolismo , Mitosis , Sistema Nervioso/citología , Sistema Nervioso/embriología , Animales , Axones/metabolismo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Células HEK293 , Humanos , Mutación/genética , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/metabolismo , Neurópilo/metabolismo , Fenotipo , Ratas , Sinapsis/metabolismo
18.
Neurosci Bull ; 35(4): 673-687, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30888607

RESUMEN

Ras-related C3 botulinum toxin substrate 1 (Rac1), a member of the Rho GTPase family which plays important roles in dendritic spine morphology and plasticity, is a key regulator of cytoskeletal reorganization in dendrites and spines. Here, we investigated whether and how Rac1 modulates synaptic transmission in mouse retinal ganglion cells (RGCs) using selective conditional knockout of Rac1 (Rac1-cKO). Rac1-cKO significantly reduced the frequency of AMPA receptor-mediated miniature excitatory postsynaptic currents, while glycine/GABAA receptor-mediated miniature inhibitory postsynaptic currents were not affected. Although the total GluA1 protein level was increased in Rac1-cKO mice, its expression in the membrane component was unchanged. Rac1-cKO did not affect spine-like branch density in single dendrites, but significantly reduced the dendritic complexity, which resulted in a decrease in the total number of dendritic spine-like branches. These results suggest that Rac1 selectively affects excitatory synaptic transmission in RGCs by modulating dendritic complexity.


Asunto(s)
Dendritas/metabolismo , Neuropéptidos/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/fisiología , Transmisión Sináptica/genética , Proteína de Unión al GTP rac1/metabolismo , Animales , Dendritas/ultraestructura , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas de Receptores de GABA-A , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/deficiencia , Receptores AMPA/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Glicina/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Proteína de Unión al GTP rac1/deficiencia
19.
J Neurosci ; 39(15): 2776-2791, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30705102

RESUMEN

Calpains are calcium-dependent, cytosolic proteinases active at neutral pH. They do not degrade but cleave substrates at limited sites. Calpains are implicated in various pathologies, such as ischemia, injuries, muscular dystrophy, and neurodegeneration. Despite so, the physiological function of calpains remains to be clearly defined. Using the neuromuscular junction of Drosophila of both sexes as a model, we performed RNAi screening and uncovered that calpains negatively regulated protein levels of the glutamate receptor GluRIIA but not GluRIIB. We then showed that calpains enrich at the postsynaptic area, and the calcium-dependent activation of calpains induced cleavage of GluRIIA at Q788 of its C terminus. Further genetic and biochemical experiments revealed that different calpains genetically and physically interact to form a protein complex. The protein complex was required for the proteinase activation to downregulate GluRIIA. Our data provide a novel insight into the mechanisms by which different calpains act together as a complex to specifically control GluRIIA levels and consequently synaptic function.SIGNIFICANCE STATEMENT Calpain has been implicated in neural insults and neurodegeneration. However, the physiological function of calpains in the nervous system remains to be defined. Here, we show that calpain enriches at the postsynaptic area and negatively and specifically regulates GluRIIA, but not IIB, level during development. Calcium-dependent activation of calpain cleaves GluRIIA at Q788 of its C terminus. Different calpains constitute an active protease complex to cleave its target. This study reveals a critical role of calpains during development to specifically cleave GluRIIA at synapses and consequently regulate synaptic function.


Asunto(s)
Calpaína/genética , Calpaína/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Animales , Señalización del Calcio/genética , Regulación hacia Abajo/genética , Femenino , Inmunohistoquímica , Masculino , Músculos/metabolismo , Optogenética , Péptido Hidrolasas/metabolismo , Interferencia de ARN , Especificidad por Sustrato , Sinapsis/genética , Sinapsis/metabolismo , Sinapsis/fisiología
20.
Asian-Australas J Anim Sci ; 32(1): 38-48, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29879815

RESUMEN

OBJECTIVE: In this study, the transcriptome profile of cow experiencing miscarriage during peri-implantation was investigated. METHODS: Total transcriptomes were checked by RNA sequencing, and the analyzed by bioinformatics methods, the differentially expressed genes (DEGs) were analysed with hierarchical clustering and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. RESULTS: The results suggested that serum progesterone levels were significantly decreased in cows that miscarried as compared to the pregnant cows at 18, 21, 33, 39, and 51 days after artificial insemination. The RNA sequencing results suggested that 32, 176, 5, 10, and 2 DEGs were identified in the pregnant cows and miscarried cows at 18, 21, 33, 39, and 51 d after artificial insemination. And 15, 101, 1, 2, and 2 DEGs were upregulated, and 17, 74, 4, and 8 DEGs were downregulated in the cows in the pregnant and miscarriage groups, respectively at 18, 21, 33, and 39, but no gene was downregulated at 51 d after artificial insemination. These DEGs were distributed to 13, 20, 3, 6, and 20 pathways, and some pathway essential for pregnancy, such as cell adhesion molecules, tumor necrosis factor signaling pathway and PI3K-Akt signaling pathway. CONCLUSION: This analysis has identified several genes and related pathways crucial for pregnancy and miscarriage in cows, as well as these genes supply molecular markers to predict the miscarriage in cows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...